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Received 30 January 1990 

Abstract. A general classification of the solutions of the Ginzburg-Landau equation for 
UPt, is presented. The free energy includes an E,, superconducting order parameter. an 
antiferromagnetic order parameter and the coupling between them. There are four distinct 
regions of the parameter space. In one of these the coupling acts as a perturbation and the 
split transition in UPt, is essentially a superconducting transition. The strong coupling region 
gives a mixed character to the transition. Phenomenologically it appears that the first 
alternative is most likely to be the correct one. 

Considerable interest has attached to UPt3 since the discovery of superconductivity in 
this heavy-fermion material. It soon became evident that low-temperature thermo- 
dynamic properties were anomalous, and suggestive of lines of nodes in the super- 
conducting gap function [ l ] .  A leading candidate for the superconducting state is a 
two component spin singlet order parameter (OP) transforming according to the E,, 
representation of the point group [2,3]. This is written as I,!/ = (qx, qy). Neutron scat- 
tering experiments [4] have made it clear that antiferromagnetism is also present below 
TN = 5 K, and that it couples to the superconductivity. It is therefore important to have 
a general form of the Ginzburg-Landau free energy for the coupled system, and to 
completely classify the solutions. Most importantly, it is necessary to understand all the 
possibilities for the split transition occurring at about T, = 0.5 K. 

The free energy density at zero external field may be written as F = Fs + FM + F S M ,  

where 

Fs = a s ( T -  TS)I,!/’I,!/*+BI(I,!/‘I,!/*)* +P211,!/.I,!/12 

F ,  = LYM(T- T,)M2 - U ( Q * M ) *  + 6,M4 (1) 

Fs, = 6 / M  + I 2  + cM21,!/ * I,!/* + d M 2  I &  * + I 2 .  
This free energy is correct to the fourth order in the space of M and I,!/. M = ( M x ,  M y )  is 
taken as a two-dimensional vector confined to the basal plane since it appears experi- 
mentally that spin-orbit coupling enforces this constraint. The &vector of the magnetism 
is taken as fixed in the x direction, in accordance with the experiment. For definiteness 
we take 6, c,  d all positive. Changing the signs makes no essential difference in what 
follows. Various pieces of this free energy have been written down previously [5-71. 
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As the temperature is reduced, the first transition takes place at TN = 5 K = TM + 
u/aM. (We take a > @ )  Below this temperature we find M: = - T)/2bM. 
This is the magnetic state. The next transition takes place at T,, = T ,  - (b  + c) 
M:(T, , ) /aS ,  where experimentally T,, = 0.5 Kso M : ( T c l )  = a,TN/2bM. Below T,, we 
find lqjlYl2= as (TcL - 7‘)/2(/3, + &). This is the superconducting transition. Experi- 
mentally, there is a third transition (the ‘lower transition’) at Tc2 = T,, - 0.05 K. So the 
crucial question about equation (1) is: what happens as T is further reduced? To 
understand this, it is convenient to rewrite Ffor T < Tc, as 

= [ a S v -  T,)  + 2 ~ 4  - 4 ~ 4  s i n 2 q i i ~ ~  1 2  + (pl + p2)i v x  1 4  

FM(M, )=aM(T-TM)M? +bMM:+2bbM$ (2)  

FSM(V,, My) = (b’ + C’ + d ’ ) iw ,  ( *  + d’M;  + (C + d) lw,  I2M$ +2b”(q ,  (My COS q. 

Here cp is the phase angle between V ,  and q,, i.e., + = (Iqxi e-’q, lVyl). Furthermore 
we have defined / 3 4  = (13, +/32)lqy12, /3; = / 3 2 1 ~ y 1 2 ,  b b  = b M M : ,  b’ = bM:,  
c’ = cM:,  d’ = dM: ,  c” = c I ~ , / ~  and b” = blVylMx. The point is that in a small range of 
temperature near Tc2 we can now regard Vy and M ,  as effective fields acting on I), and 
M y .  The notation may be further simplified if we write 

F =  E S l q x / ’  + E M M ;  + 2r lq , r /M,  + o(qx, My)4 ( 3 )  

where E ~ ( T )  = a s ( T -  Ts )  + 2/34 - 4/3; sin2cp + b’ + C’ + d‘ ,  EM(T)  = a M ( T -  TM) 
+ bb + c” and t = b” cos cp. Equations (2) and (3) are the same as those written down 
in [7], except for inessential details. 

The quadratic form (3) may now be diagonalised, and the final form for Fis  

F =  A_@? +A+@: +/3-@! +/3+@.“+ +/3+-@!@: +fit@$@.- +/3:@!@+. (4) 

are linear combinations (to be determined) of / y x /  and My, and A, = + ( E ~  + E ~ )  i 
t [ ( e S  - + 4t2]’I2. The next transition occurs [7 ]  when L ( T )  = 0 or 

( 5 )  2 & s & M  = t . 

This defines Tc2. Below this temperature @! - ( Tc2 - T )  and 

F(V, ,  MY) = - W c p ) / B ( c p ) .  (6) 

B(cp) is a complicated function of the A s  and ps. We now wish to classify all the solutions 
of equations ( 5 )  and (6). There are four regimes of parameter space. 

(i) Lower transition is magnetic; weak coupling. This part of the parameter space is 
characterised by the inequalities 

1Es(T= 0)i %.(T= 0) I & M ( T =  0)l % t ( T =  0). (7) 

That is, the energy scales for both superconductivity and magnetism are much larger 
than the coupling energy between the two. In addition eM( T )  crosses zero near Tc2. Then 
the transition is essentially magnetic, and the critical temperature is given by 

T,2 = T N  - (bb + C ” ) / ~ M  4- t2/&sCYM (8) 

and the order parameter @- - M y .  
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(ii) Lower transition issuperconducting; weakcoupling. Again we have the inequalit- 
ies I E ~ (  T = 0 )  I b t( T = 0 )  and I cM( T = 0 )  1 b t( T = 0 ) ,  but now E ~ (  T )  crosses zero near 
Tc2. Then we find 

Tc2 = T,1 - (2p; + b’ + c’ + d’ ) /as  4- t 2 / E M a s  Q- - l vx / .  (9) 
(iii) Strong coupling. Here the opposite inequality holds: 

t 2 ( T = 0 )  > IES(T=O)EM(T=O)I. (10) 

Note that near Tcl, we have t2 = t2(Tc1 - T ) ,  where t2 = b2M;as  c0s2q/2(p, + p 2 ) .  
Therefore t2( Tc2) 6 t2( T = 0 )  and we have a solution of ( 5 )  in spite of the inequality (10). 
The critical temperature is given by 

Tc2 = Tcl - E ~ E ~ / ~ ~  (11) 

and Q- is a mixture of /qxl and M y .  
(iv) No lower transition. Equation ( 5 )  may be rewritten as a quadratic equation in 

T. If all solutions have T < 0, then there is no further transition. The criterion which 
determines this is algebraically complicated and so we do not give it explicitly here. 
Physically, the conditions are easily understood. They are ( a )  Ts < 2ps/as; ( b )  TM < 
b h / a M ;  (c) 4b”2 /aSaM < 2p4 - a s T s  + b h  - a M T M .  These merely say that the under- 
lying critical temperatures for superconductivity and magnetism are small enough that 
non-linear couplings do not induce any transitions. This part of parameter space is clearly 
ruled out by experiment and therefore is not discussed further. 

The above four solutions are limiting cases which give the possible extremes of 
behaviour of the system. Intermediate cases between these solutions are in principle 
also possible, but do not seem to be realised experimentally, with one possible exception 
to be mentioned below. Intermediate regimes would give a lower critical temperature 
Tc2 which is not related to T,, and therefore the smallness of the splitting would be 
accidental. This is also true of case (i) above and therefore this solution can also be 
eliminated from consideration, 

This leaves only cases (ii) and (iii) as candidate solutions to be investigated in more 
detail. One issue is the value of q .  If e’v is complex, then the superconducting state 
breaks time reversal symmetry with a number of interesting consequences [8]. The free 
energy (6) is a function of q ,  and minimisation of this expression for cases (ii) and (iii) 
will give the equilibrium value of q. For case (ii), at Tc2 we have lcM 1 > IcS 1, E M  > 0 ,  
cS < 0, and A- = eS - t 2 / & M  = 4p; cos2q-  4b‘I2 cOs2(p/&M +constant. Maximising A- 
alone taking into account the inequality (7) gives q = i n/2 as long as p2 > 0. (Note 
/3; has the same sign as p 2 . )  p2 > 0 is the weak coupling result [9]. For case (iii), 
A- = - It[. This is maximised by v, = 0 or q = JG. Hence case (ii) leads to a maximally 
complex superconducting state, while case (iii) gives a real state [7]. Also very important 
is that in case (ii) the equilibrium value of t  is zero, i.e. there is no coupling between 1 vxl 
and M y ,  so Q- = lvxl. Hence M y  = 0 at all temperatures. In case (iii) the coupling t i s  
maximised and lqxl and M y  appear simultaneously, as already mentioned. 

Cases (ii) and (iii) are limiting cases which can be handled analytically. In general, 
the original free energy (1) must be minimised numerically to investigate intermediate 
cases. When this is done, the result is qualitatively the same as is given by the minimisation 
of (6): cases (ii) and (iii) are stable minima separated by a boundary in parameter space 
of first-order transitions. On this boundary the free energy is independent of q .  Because 
of this degeneracy, higher-order terms not included in (1) would broaden the boundary 
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into a finite region (but most likely small) where 0 < lq I < n/2 and My # 0. We call 
this case (iia). Even though its occurrence is a priori improbable it is included for 
completeness. 

This completes the analysis of the possible equilibrium solutions of (1). Cases (ii) 
and (iii) are well known (see [3-5, 101, and [7] respectively). Only case (iia) is new. 
The point of the present work is to establish that these are the only three theoretical 
candidates for the state of UPt, and to compare their properties. 

The most important phenomenological distinction between cases (ii) and (iii) is the 
node structure of the energy gap function lA(k)l .  If we choose basis functions k,k, and 
k,k, for the El, representation, then lA(k) = /q ,k ,k ,  + q,k,k,l. For case (ii), we find 
IA(k)I = /qx  1 I k ,  I (kz  + k ; ) l / * ,  which has zeros in the basal plane k ,  = 0 and on the z 
axis k, = k, = 0. The intersection of these sets with the Fermi surface gives point nodes 
and ‘horizontal’ lines of nodes. (Note that the translation group symmetry will also 
require a line of nodes at k ,  = n / c ,  where c is the lattice constant along the z direction 
[ l l ] . )  For case (iii), A ( k )  = Ik,(q,k, + W,k,)I and q, and ?+!I, may be taken to be real. 
This function has the horizontal line of nodes k ,  = 0 and ‘vertical’ lines of nodes on the 
intersection of the plane W,k, + q,k,  = 0 with the Fermi surface. More generally, a 
complex J/ always guarantees lines of horizontal nodes and point nodes, while a real JI 
always gives both horizontal and vertical lines of nodes. Hence case (iia) falls in the 
former category and in this respect is similar to case (ii). With respect to the existence 
of the transverse component of the magenetism My, however, it more resembles case 
(iii). 

We now turn to a discussion of experiments in UPt,, concentrating on low-field 
properties. 

Specific heat. The two salient features here are: first, the closeness of the two jumps at 
T,, and Tc2, and second, the comparable size of the jumps [ 121. The first point has already 
been commented upon: it eliminates cases 1 and 4 but does not distinguish between 
cases (ii) and (iii). The second observation, however, clearly does distinguish be- 
tween (ii) and (iii). The specific heat jump at Tc2 is given by ACv(Tc2)/Tc2 = 
- d2F(q,, My)/dT21T,2,  and F ( q 1 ,  M y )  is written out in (6). The jump for case (ii) has 
been calculated previously [ 5 , 6 ] :  ACv(Tc2) /Tc2  = ~yz/2/3~. For case (iii) the result is 
ACv(Tc2)/Tc2 = 12/2B. The specific heat jump at the upper superconducting transition 
(for both cases) is ACv(Tcl)/Tcl = a2,/2(P1 + P2) .  Experimentally the two jumps are 
certainly comparable in magnitude. This would argue for case (ii) since and P2 would 
not be expected to be very different, at least in weak coupling theory. There is no 
particular relation between land ( Y ~ ,  however, so in case (iii) there is no reason to expect 
similar-sized jumps. The same reasoning would tend to rule out case (iia). It is important 
to note that the split transition was predicted theoretically on the assumption of case 
(ii) [lo]. 

Ultrasonic attenuation. Here the most important result is the polarisation dependence 
of transverse ultrasound propagating in the basal plane. It was observed that the absorp- 
tion is considerably stronger for a polarisation vector lying in the plane than for polar- 
isation perpendicular to the plane [13]. This anisotropy would strongly suggest that there 
exist horizontal lines of nodes but no vertical lines of nodes. This would agree for case 
(ii), which has this node structure. 
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Electromagnetic response. The response of UPt, to electromagnetic radiation at 10 MHz 
is also anisotropic [14]. Calculations indicate that this anisotropy is also indicative of a 
state whose line nodes lie only in the basal plane, with the line probably broadened to a 
strip by resonant impurity scattering [15]. This would again be an indication that case 
(ii) or (iia) is realised in UPt,. 

Lower criticalfield. Recent measurements of the lower critical field for H in the basal 
plane have been interpreted as being in confirmation of case (ii) [5,16]. dHCl/dT 
increases by roughly a factor of two as Tis lowered through Tc2. Since H,, is proportional 
to the superfluid density, this is a strong suggestion that the transitions at T,, and Tc2 
have essentially the same character in the sense that lqYl2 - (Tcl - T)aS / (P l  + b2) and 
1 qXl2 - (T,, - T)aS/@, .  Thus the conclusion from these HC1 measurements is consistent 
with the specific heat measurements and points to case (ii). 

On the other hand, H,,(T) for H along the c axis shows no such kink at Tc2. 
However, one should note that, for zero-field-cooled samples, case (ii) does not make a 
simple prediction. There will be two equivalent domains for this case, corresponding to 
(1, i) and (1, -i) states. These states have different HC1 values [5]. If the magnetisation 
is measured for T < Tc2, then M ( H )  would show a two-kink structure rather than the 
conventional single kink. (This last statement assumes that full equilibrium is reached, 
which is doubtful in practice because of flux pinning.) There appears to be some evidence 
of such a two-kink structure at 300 mK [14]. 

Case (iii) does not have such a domain structure and would therefore predict similar 
behaviour for Hcl( T) for the two directions of H ,  presumably with only a small kink at 
Tc2. 

Neutron scattering. Experiments have recently been done which measure the intensity 
of a single magnetic Bragg peak as a function of field and temperature [17]. At zero 
field, this intensity decreases by about 5% as the temperature is lowered from T,, to 
zero, with a kink occurring near T,, or Tc2. This may be attributed to ( a )  a decrease in 
lMI or ( b )  a rotation of M with IMI remaining roughly constant. Case ( a )  would be 
consistent with case (ii) if the coefficient c were large, i.e. when there is strong com- 
petition between the magnitudes of + andM but no rotation ofM. Case (iii) is consistent 
with either ( a )  or ( b ) ,  as is case (iia). Further experimentation is necessary to decide 
between ( a )  and (b ) .  

We have so far concentrated on low-field properties. However, further information 
can be obtained by examining the phase diagram in the entire H-Tplane. According to 
[7], case (iii) leads to the conclusion that there are three distinct superconducting phases 
(at least when H is in the a-b plane), while case (ii) is consistent with either two or three 
such phases. The recent specific heat [18] and neutron scattering [17] experiments 
suggest that the zero-field transition at Tc2 behaves similarly to the low-temperature 
transition at H = HC2/2. This suggests that only two phases are present, since in this case 
there would be a single phase boundary reaching from the point H = 0, T = Tc2 to the 
T = 0 axis. 

In summary, there appears to be strong evidence for the node structure of cases (ii) 
or (iia). Additional support for case (ii) in particular is the similar appearance of the 
transitions at T,, and Tc2 in specific heat and lower critical field measurements. If there 
is a rotation of the magnetisation vector at Tc2, however, this is not consistent with (ii), 
but only with (iia) or (iii). 
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